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Abstract 

Purpose: Automatic speech processing devices have become popular in recent years for assessing the 
amount of ambient language input available to children in their home environments. Yet, prior studies 
have not investigated potential sources of systematic error in automatic detection of language input to 
children. We present an independent assessment of language input accuracy for the widely-used 
Language ENvironment Analysis (LENA) system. LENA is a wearable device that collects daylong 
recordings of children’s language environments, classifies audio sources, and provides an automated 
Adult Word Count. We investigated whether the amounts of error in LENA’s automatic estimates of 
language input to a child were consistent across families, and whether error rates differed systematically 
as a function of the gender of adult talkers and whether adults’ speech was directed to children or adults. 
Method: Audio was sampled from within one day-long LENA recording from each of 23 families with a 
child aged 4 – 34 months. Portions of recordings where children were expected to be at home, i.e., 
beginnings and endings of day-long recordings, and audio within and between LENA-identified 
conversations was sampled. For sampled audio, human coders identified start and end times of 
communicative vocalizations by adults and children, counted intelligible words produced by adults, and 
determined whether adults’ speech was addressed to children or to other adults.  LENA’s classification 
accuracy was assessed by parceling sampled audio into 100 msec frames, then comparing human and 
LENA classifications for each frame.  
Results: LENA made correct classifications that intelligible adult speech had occurred (i.e., a necessary 
condition for LENA to correctly increment its Adult Word Count metric) for 67% of frames on average 
across families. This meant there was an average false negative rate of 33% across families for intelligible 
adult speech classification, with false negative rates ranging across families from a low of 18% of missed 
frames to a high of 55% of missed frames. Further, on average LENA’s Adult Word Count typically 
overcounted relative to actual counts of intelligible adult words by a mean +47% error; there was also 
substantial variability in amounts of Adult Word Count error across families, where the amounts of error 
ranged from undercounting words by 17% to overcounting words by 208%. Finally, the amounts of error 
in both classification of intelligible adult speech and Adult Word Count were systematically and 
significantly affected by the gender of an adult talker (male vs. female) and whether that talker was 
speaking to a child or an adult. The condition showing the greatest errors in both classification and Adult 
Word Count involved speech of adult females addressing children.  
Conclusions: These results show that LENA’s classification decisions and Adult Word Count entail 
random error which is sometimes quite large in magnitude. Further, systematic error was shown for 
LENA’s classifications and Adult Word Count as a function of talker’s gender and style of speech; the 
most error occurred when adult female speakers talked to children. These results suggest that relying 
solely on LENA’s Adult Word Count estimates is not a best practice and may lead to invalid clinical 
judgments and/or research conclusions.   
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Introduction 

It is now well-established that the quantity of speech young children experience predicts their speech and 
language outcomes (Greenwood, Thiemann-Bourque, Walker, Buzhardt, & Gilkerson, 2011; Hart & 
Risley, 1995; Hoff & Naigles, 2002; Montag, Jones, & Smith, 2018; Romeo et al., 2018; Rowe, 2012; 
Weisleder & Fernald, 2013; Weizman & Snow, 2001). Specifically, children’s language development 
attainment appears to be best predicted by the amount of language directed to them – i.e., the amount of 
so-called infant-directed speech – rather than the amount of overheard or adult-directed speech (Romeo et 
al., 2018; Weisleder & Fernald, 2013). Therefore, quantifying the amount of language in children’s 
natural home environments – especially the amount of language spoken directly to children themselves – 
is central to numerous research and clinical purposes. From a research perspective, quantifying the 
amount of language spoken in a child’s home is an important step in addressing theoretical questions 
about language development (e.g. Montag et al., 2018; Shneidman, Arroyo, Levine, & Goldin-Meadow, 
2013; Weisleder & Fernald, 2013). From a clinical perspective, quantifying the amount of language in a 
child’s home assists speech-language pathologists to determine how much caregiver communication is 
occurring to support language development – information often essential to determining the effectiveness 
of caregiver-centered interventions for enhancing the frequency of child-directed communications 
(Roberts & Kaiser, 2011; Vigil, Hodges, & Klee, 2005). 

The commercial availability of automatic speech processing technologies has meant that such 
devices have become an increasingly popular means of quantifying ambient language in a child’s 
environment. One widely–employed automatic speech processing device used by researchers and 
clinicians is the Language ENvironment Analysis (LENATM; LENA Research Foundation, Boulder, CO) 
system (Christakis et al., 2009; Ford, Baer, Xu, Yapanel, & Gray, 2008; Gilkerson, Coulter, & Richards, 
2008; Gilkerson & Richards, 2008; Greenwood et al., 2011; Xu, Yapanel, & Gray, 2009; Zimmerman et 
al., 2009). This system consists of an audio recorder within a vest worn by a child capable of holding up 
to 16 hours of audio. LENA uses off-line software to generate an automated Adult Word Count that has 
now been widely used in numerous basic scientific and applied clinical studies and settings (Burgess, 
Audet, & Harjusola-Webb, 2013; Caskey, Stephens, Tucker, & Vohr, 2011, 2014; Caskey & Vohr, 2013; 
Johnson, Caskey, Rand, Tucker, & Vohr, 2014; Oller et al., 2010; Pae et al., 2016; Sacks et al., 2014; 
Soderstrom & Wittebolle, 2013; Suskind, Leffel, et al., 2016; Thiemann-Bourque, Warren, Brady, 
Gilkerson, & Richards, 2014; Wang et al., 2017; Warlaumont, Richards, Gilkerson, & Oller, 2014; 
Warren et al., 2010; Weisleder & Fernald, 2013; Zhang et al., 2015). 

Yet, questions remain about LENA’s strengths – and weaknesses – as a tool for quantifying 
children’s linguistic and auditory environments. The present paper addressed unanswered questions about 
the accuracy of LENA’s Adult Word Count measure – a measure focused on here, due to its widespread 
adoption as a means of quantifying ambient language in a child’s environment. (Note that the present 
paper does not consider accuracy of other measures generated by LENA, such as its estimates of 
conversational turn counts and/or child vocalizations.) We questioned whether LENA’s Adult Word 
Count measure would be equally accurate across different family home environments, styles of speech, 
and/or genders of the talkers. Achieving a high and consistent level of accuracy across all these incidental 
variables is essential for meaningful interpretations to be drawn from data about individual families and 
the language environments they provide. Consider the consequences, for instance, if speech spoken by an 
adult man were systematically and incorrectly identified an adult woman, or if speech spoken by an adult 
woman were systematically and incorrectly identified as a child. Such mis-attributions, if attested, could 
generate invalid clinical (or research) inferences about both caregiver and child vocalization behaviors. 
Likewise, consider the consequences if the number of words identified by the LENA software differed 
substantially from the actual speech content of the environment. If measurement errors were large 
enough, they could potentially obscure the true picture of behavior profoundly. If there were large errors 
due to undercounting, then families providing a lot of input to a child would present as if they provided 
very little input to the child. If there were large errors due to overcounting, then families providing very 
little input to a child would present as if  they provided a lot of input to the child. Further, any errors 
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systematically associated with classes of speech of interest – such as female speech – would be more 
problematic. We therefore pose the following instructive rhetorical questions: What is an acceptable 
amount of error in estimates of speech in a child’s environment? Similarly, what is an acceptable amount 
of mis-attribution of speech spoken by one talker to another talker?  

Several studies have quantified the extent of correlation between LENA’s Adult Word Count and 
human manual transcriptions of adult words. In general, these studies showed that LENA’s Adult Word 
Count is correlated with the actual number of words spoken by adults (Table 1). Other studies (Ambrose, 
Walker, Unflat-Berry, Oleson, & Moeller, 2015; Burgess et al., 2013; Ramírez‐Esparza, García‐Sierra, & 
Kuhl, 2014) have transcribed audio from LENA recordings to calculate word counts from human 
transcription but did not directly compare these word counts to LENA’s Adult Word Count. However, the 
proportion of unexplained variance in LENA’s Adult Word Count accuracy (1- r2) has been shown to 
range up to 40% (cf. Soderstrom & Wittebolle, 2013), indicating little a priori basis to determine the 
expected degree of match between LENA Adult Word Count and actual human word counts for any given 
recording.  

 

Table 1. Previous studies reporting on the relationship between LENA and human quantified adult word 
count.  
Authors Language Pearson’s r Sample 

Xu et al. (2009)* English .92 
One-hour samples with high vocal activity from N = 70 
families recorded at home (a total of 4200 minutes) 

McCauley et al. 
(2011)* 

English .81 
Five-minute segments from N = 30 preschool 
recordings (a total of 150 minutes) 

Caskey et al. (2014) English .93 
N = 5 5-minute recordings from a neonatal intensive 
care unit (a total of 25 minutes) 

Gilkerson et. al.  
(2018) 

English .95 
A total of five thousand minutes from N = 94 families 
(including the 70 families from Xu et al. 2009) 

Soderstrom & 
Wittebolle (2013) 

English .76 
One hundred eighty three five-minute intervals from N 
= 11 children recorded at home and at daycare (a total 
of 915 minutes) 

Schwarz et al. (2017)* Swedish .67 
Forty-eight five-minute intervals selected from N = 4 
12-hour recordings (a total of 240 minutes)  

Weisleder & Fernald 
(2013) 

Spanish .80 
Sixty-minutes constructed from non-contiguous 5 
minute intervals from 10 at-home recordings. 

Oetting et al. (2009)* English .71 and .85 
Seventeen 30-minute samples of pre-recorded mothers 
and their children (a total of 510 minutes) 

Gilkerson et al. (2015) Chinese .73 
Three 5-minute samples from daylong at home 
recordings of N = 22 families (a total of 330 minutes) 

Busch et al. (2017) Dutch .87 
Forty eight 5-minute samples from 8 recordings from 6 
children (a total of 240 minutes) 

Canault et al. (2016) French .64 
Three hundred twenty-four 10-minute samples from 
home recordings of N = 18 children recorded at 3 time 
points (a total of 3240 minutes) 

Pae et al. (2016) Korean .72 
Twenty-seven 10-minute samples from home 
recordings and 36 10-minute samples from an 
experimental reading task (a total of 630 minutes) 

Note. Citations with asterisks (*) did not appear in peer-reviewed journals. 
 

 
As noted by Busch et al. (2017), correlation coefficients are a poor means of assessing accuracy, 

or variability in accuracy. Correlations indicate the degree of scatter of values around a line of best fit, but 
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do not reveal degree of measurement bias, which might be proportional (i.e., a difference in slopes best-fit 
lines from 1) or fixed (i.e., a non-zero intercept; Busch, Sangen, Vanpoucke, & van Wieringen, 2017; 
Ludbrook, 1997).  Therefore, it is misleading to rely solely on correlations to assess whether one method 
(e.g., actual human word counts) can be replaced with another (LENA’s Adult Word Count estimates). 
Moreover, it is not clear that methods can be validly compared by only regressing results of one method 
(e.g., LENA’s Adult Word Count) on another (e.g. human word counts) using ordinary least squares 
(Bland & Altman, 1986; Busch et al., 2017; Ludbrook, 1997). Linear modeling does provide useful 
information about whether independent measurements (word counts from LENA and humans should not 
be independent) are related to one another, especially when used with the proper random effects structure 
(Barr, Levy, Scheepers, & Tily, 2013; Jaeger, 2008).   

We asked whether accuracy of LENA’s Adult Word Count estimates might depend on a prior 
step: its classification accuracy for sound sources. There have been only a handful of studies examining 
LENA’s classification accuracy, and fewer still that examine whether classification accuracy 
systematically affects Adult Word Count accuracy. Yet, LENA’s Adult Word Count estimates are the end 
result of a series of multiple, hierarchically dependent signal processing steps to classify audio sound 
sources; errors introduced at any stage could persist and potentially be compounded to differentially affect 
Adult Word Count accuracy. The initial steps of LENA’s algorithms involve classifying (i.e., labeling) 
stretches of audio of variable length as female adult speech (labeled as FAN in LENA’s ADEX software), 
male adult speech (MAN), key child (CHN), other child (CXN), overlapping vocalization (OLN), 
TV/electronic media (TVN), noise (NON), silence (SIL), or uncertain (FUZ). Next, the seven categories 
other than silence are divided into “near-field” or “far-field” sounds based on the energy in the acoustic 
signal. Next, short stretches of audio categorized as (near-field) speech or speech-like vocalizations by an 
adult or child that are temporally close to one another are grouped together into units called 
“conversational blocks”. Remaining contiguous stretches of audio classified as “far-field” (or “faint”) are 
reclassified as “Pause” units given that any speech in such audio is probably unintelligible or hard to hear 
(Xu, Yapanel, Gray, & Baer, 2008; Xu, Yapanel, Gray, Gilkerson, et al., 2008). Finally, stretches of audio 
classified as near-field male or female adult speech (MAN or FAN) are used to derive LENA’s Adult 
Word Count values. 

Prior work hints at a relationship between Adult Word Count accuracy and segment classification 
accuracy. In a well-cited but unpublished study, Xu et al. (2009) reported an overall Pearson’s r of 0.92 
between human transcription and LENA’s Adult Word Count within 1-hour samples from 70 recordings, 
although many details of their analysis are not reported. Xu et al. further reported a substantial difference 
in word count estimates (human – LENA) for two separate 12-hour recordings, one in a quiet 
environment and one in a noisy environment; the difference was roughly -0.4% for the former but -27.3% 
for the latter. This tantalizing finding suggests substantial variability in Adult Word Count accuracy may 
occur in the LENA system, though this remains largely unexplored.  

A handful of studies have evaluated LENA’s accuracy at classifying audio through labeling 
segments, as opposed to Adult Word Count accuracy. Perhaps the most widely cited example, Xu et al. 
(2009; Xu, Yapanel, Gray, Gilkerson, et al., 2008), is frequently referenced to establish the reliability of 
LENA classification (Ambrose, VanDam, & Moeller, 2014; Caskey & Vohr, 2013; Dykstra et al., 2013; 
Gilkerson, Richards, & Topping, 2017; Gilkerson, Richards, Warren, et al., 2017; Greenwood et al., 
2017; Greenwood et al., 2011; Johnson et al., 2014; Marchman, Martínez, Hurtado, Grüter, & Fernald, 
2017; Ota & Austin, 2013; Ramírez-Esparza, García-Sierra, & Kuhl, 2017; Richards, Gilkerson, Xu, & 
Topping, 2017; Richards, Xu, et al., 2017; Sangwan, Hansen, Irvin, Crutchfield, & Greenwood, 2015; 
Thiemann-Bourque et al., 2014; VanDam, Ambrose, & Moeller, 2012; Warlaumont et al., 2010; 
Warlaumont et al., 2014; Xu, Gilkerson, Richards, Yapanel, & Gray, 2009; Xu, Richards, et al., 2009; 
Zhang et al., 2015). The classification accuracy data reported by Xu et al., and re-reported in Christakis et 
al., (2009), Zimmerman et al. (2009), and Warren et al., (2010) was based on human coding generated for 
another unpublished study (Gilkerson et al., 2008). Xu et al. reported that LENA accurately classified 
82%, 76%, and 76% of adult, child, and other segments, respectively. Warren et al. (2010) suggested this 
agreement was the result of comparisons within 10 msec intervals, such that 82% of 10 msec intervals 
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that humans labeled as adult speech were labeled as such by LENA. This data set has also been analyzed 
in great detail for the accuracy of child vocalization classification (Oller et al., 2010).  However, Xu et al. 
(2009; p. 5) state that their algorithm for sampling the audio for use in the analysis “was designed to 
automatically detect high levels of speech activity between the key child and an adult”, leaving unclear 
whether their sampling procedure might have introduced bias into estimates of accuracy that would affect 
generalizability to other situations.  

Groups outside of the LENA organization have also investigated classification by LENA. Ko, 
Seidl, Cristia, Reimchen, and Soderstrom (2016), randomly selected LENA-defined segments (50 FAN 
and 50 CHN) from 14 recordings (1400 total segments). Humans then manually coded these segments. 
LENA’s mean accuracy was 84%; however, accuracy ranged between 51% and 93% across recordings, 
suggesting a great deal of variability. A similar recent analysis of classification accuracy (Seidl et al., 
2018) had human listeners code 1384 LENA defined FAN and CHN segments. They found overall 
accuracy of 72% with confusion between FAN and CHN segments occurring 15% of the time. VanDam 
and Silbert (2013; 2016) elaborated upon other classification results by determining factors in the audio 
that predict accuracy in LENA. They selected 30 segments each from 26 recordings that LENA had 
classified as FAN, MAN, or CHN. Human listeners classified these LENA-defined segments as mother, 
father, child or other. Human listeners classified segments LENA identified as FAN or MAN as adult 
speech 80% of the time. They further found evidence that LENA’s classification relied on fundamental 
frequency (F0) and duration as major criteria for deciding among adult male, adult female, or child 
talkers. Missing from studies of LENA’s audio classification reliability, among other things, are robust 
assessments of LENA’s false negative rate (since many studies have focused only on stretches of audio 
that LENA had identified as a talker), a thorough characterization of variability in accuracy across 
multiple families, and identifying how classification error carries over to LENA’s Adult Word Count.  

Further, none of the studies mentioned above assessed whether there are systematic biases in 
accuracy of LENA’s classification of audio or Adult Word Count estimates across adult talkers or 
situations. Given VanDam and Silbert’s (2016) finding that LENA appears to rely heavily on F0 and 
duration to classify a talker as a man, woman, or child, it is notable that F0 varies considerably as a 
function of many factors, including talker gender, speaker size, emotional state, and/or communicative 
intent (Bachorowski, 1999; Benders, 2013; Fernald, 1989; Pisanski et al., 2014; Pisanski & Rendall, 
2011; Podesva, 2007; Porritt, Zinser, Bachorowski, & Kaplan, 2014). Situation-specific speech register 
could potentially affect accuracy in LENA, something especially important for clinical and research 
issues in child language. Adults often adopt an ID speech register when speaking with young children, 
typically characterized by higher and more variable F0 (i.e., dynamic pitch) and slower rate (i.e., longer 
durations) relative to an AD register, along with shifts in other kinds of acoustic cues (e.g., distributions 
of vowel formants; Cristia & Seidl, 2013; Kondaurova, Bergeson, & Dilley, 2012; Wieland, Burnham, 
Kondaurova, Bergeson, & Dilley, 2015). Therefore, the intended addressee –child or adult – can have 
implications for distributions of acoustic cues – especially F0 and duration – in ID vs. AD speech, 
potentially systematically affecting LENA performance. The gender of a talker and the addressee of a 
segment of speech – whether addressing a child or an adult – could in theory systematically affect 
accuracy of LENA’s measures. Ensuring the consistency and comparability of metrics in this widely-used 
device is important for ensuring the soundness of theoretical claims or clinical guidance made on LENA’s 
output.  

The present study, therefore, provided important new data regarding variability and consistency 
in LENA’s accuracy for quantifying children’s language environments across families in English. Further, 
we asked whether differences in classification accuracy for human vocalizations could explain differences 
in Adult Word Count accuracy. Our sampling method relied on selecting audio from cases where LENA 
had and had not identified speech in order to evaluate LENA’s accuracy more thoroughly than prior 
studies. Finally, an important goal was to quantify how accuracy in LENA’s classifications and Adult 
Word Count might differ based on the gender of the talker and the addressee in ID vs. AD speech. 
Previewing our results, we found that LENA’s classification and Adult Word Count accuracy depended 
on both the gender (male vs. female) of the talker and the addressee (ID vs. AD).  
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Methods 

The present study was conducted as part of initial phases of a larger NIH-funded project at the Ohio State 
University and Michigan State University focused on investigating how the amount and quality of language 
input in a child’s environment predicts language development in children with and without hearing loss. 
This study was an initial validation test and assessment of whether LENA’s Adult Word Count was suitable 
as a primary dependent measure for our broader project. Specifically, we asked (1) whether error in LENA’s 
Adult Word Count was small and consistent across families; (2) whether this error was unbiased across and 
robust to conditions of interest, i.e., ID vs. AD speech; and (3) whether the amount of error was affected by 
extraneous factors, such as whether talkers were male vs. female. Satisfying (1), (2), and (3) were necessary 
preconditions for using LENA’s Adult Word Count as a primary metric for our individual differences 
research. The study was also designed to permit identifying systematic sources of inaccuracy or bias in 
LENA classification steps that might help explain downstream inaccuracies in calculation of the LENA 
Adult Word Count. 

Participants. LENA recordings used in the present study were collected in pilot and initial stages of the 
larger NIH-funded project described above. Participating families gave permission to participate and to 
have their child wear a LENA system for at least one day. The research was approved by the Institutional 
Review Boards at Ohio State University and Michigan State University. The present study was based on a 
single day-long recording from each of a total of 23 enrolled families who had completed at least one day-
long LENA recording at the time of initiation of the present study. If an enrolled family had completed 
more than just one LENA recording, as called for under the broader grant protocol, then the first LENA 
recording made was included in the present study. Each family had a child aged 4 – 34 months (M = 20 
months, SD = 8.8 months) at the time of recording. Target children (i.e., those wearing the LENA device) 
had a range of hearing statuses, consistent with the broader project goals; these included four families with 
a target child which had normal hearing (M = 14.9 months old, SD = 14.6 months), eight families with a 
target child that had hearing aids (M = 15.6 months old, SD = 6.2 months), two families with a target child 
had a cochlear implant in one ear and a hearing aid in the other (M = 21.9 months old, SD = 1.3 months), 
and nine families with a target child had bilateral cochlear implants (M = 25.1 months old, SD = 7.7 months). 
Children with cochlear implants had 3 – 22 months (M = 10 months, SD = 7.54 months) of post-implantation 
hearing experience. Given that we had a different number of recordings at various time points in the 
longitudinal study we used a consistent rule across all families by using the first available recording from 
each family where the child had hearing experience. 

General research design and selection of audio. Our approach involved: (1) sampling audio from LENA 
recordings of family language environments; (2) enlisting human coders to (a) identify times when they 
heard speech vocalizations, and, for adults’ speech, determine whether it was child- or adult-directed, and 
(b) count the number of words in adult speech utterances; (3) parceling sampled audio into 100 ms frames, 
then for each frame, compare the code from humans with that from LENA; and (4) compare human word 
counts and LENA’s Adult Word Count estimates.   

Prior published studies of LENA classification accuracy have not estimated the proportion of 
intelligible speech which LENA inaccurately classifies as non-speech (i.e., the false negative rate). Our 
study thus sought to estimate a false negative rate in part by sampling pause units, i.e., portions of audio 
which LENA had classified as not containing near-field speech, as well as from conversational blocks, i.e., 
portions of audio which LENA had classified as containing near-field speech (although see Schwarz et al., 
2017; Soderstrom & Wittebolle, 2013 for analysis of AWC accuracy that included audio from LENA 
defined pauses). Thus, unlike prior classification studies (e.g., VanDam & Silbert, 2016), our design 
permitted estimation of LENA’s classification rates of true positives, true negatives, false positives, and 
false negatives for categories like speech vs. non-speech.  



8 
 

From each family’s recording, we first excluded audio for which the child was asleep based on 
context in the audio which evidenced prolonged heavy breathing, the parents saying goodnight, and/or other 
contextually-based cues to naps, since there was no communicative relevance for the child of any adult 
speech during those times. Next, we selected the first and last 30 “adult-speech” conversational blocks, i.e., 
those that had been classified by LENA’s off-line Advanced Data Extractor (ADEX) classification software 
(v. 1.1.3-5r10725) as involving at least one adult talker – female (FAN) or male (MAN) – as a primary 
participant. The selection of conversational blocks containing adult speech was motivated by the desire to 
use LENA’s Adult Word Count metric, which is only calculated for segments of adult speech. In total, 
samples of approximately 30 minutes of audio (“sampled audio”) were drawn from the beginnings and 
endings of each recording. These times were selected because family members were likely to be at home 
and engaged in routine, child-centered activities, e.g., waking up, eating morning or evening meals, and 
getting ready for bed. As such, this audio was deemed likely to be a fairer test of LENA’s capabilities as it 
was deemed likely to directly assess the home environment without variability introduced by families 
engaging in a wide-ranging set of daily activities. Additionally, given our priority of maximizing reliable 
determination of when ID vs. AD speech was happening from context, sampling audio from the beginning 
and end of the day had the benefit of enhancing continuity of understanding situational contexts of 
communicative interactions, which other sampling methods might not have afforded. If the total duration 
of either the first 30 or last 30 adult speech conversational blocks was less than 10 minutes, then for 
whichever portion(s) that fell below 10 minutes, we included the next (or preceding, respectively) 
consecutive adult speech conversational block until the 10-minute minimum was reached. This yielded a 
minimum of 20 minutes of sampled audio from adult speech conversational blocks per recording (M = 
22.98 min, SD = 5.36 min, range: 20.02 – 44.33 min). There was considerable variability in conversational 
block durations across recordings (M = 10.65 sec., SD = 21.07 sec., median = 4.17 sec., range: 0.6 – 529.97 
sec.). 
 The sampled audio also included approximately 9 minutes of short chunks of audio from pause 
units (i.e., audio that LENA had identified as not containing near-field speech), which were interleaved 
between audio portions of adult speech conversational blocks from the beginning and end of the day that 
had been selected as described above. The mean portion of sampled audio from pause units was M = 9.31 
minutes (SD = 0.43 min, range: 8.75 – 9.96 min). Sampled audio from pause units was selected by first 
dividing pause units that fell between selected adult conversational blocks into 5-second chunks; chunks 
were then randomly selected for study inclusion until 5 minutes total duration from pause units was selected 
at the beginning and at the end of the file. Any portions of sampled audio that incidentally overlapped with 
a conversational block consisting of primarily child talkers were excluded. After this exclusion, if the total 
duration of sampled audio from pause units was less than 4 minutes, then additional 5-second chunks of 
pause units were randomly included in the sample until a minimum of 4 minutes from pause units was 
achieved. Durations of pause intervals between the sampled conversational blocks with adult speech varied 
considerably (M = 31.9 sec., SD = 231.0 sec., median = 10.9 sec., range: 2.3 - 12062.9 sec.). Across all 
selected recordings, sampled audio for analysis (from conversational blocks and pause units) consisted of 
a mean of 32.29 minutes of audio per participating family (SD = 5.42; range: 29.07 – 54.15 min.). The total 
size of the sample was 735 minutes of total coded audio, which compares favorably with the amount of 
audio examined in the other studies listed in Table 1. Independent variables of primary interest for statistical 
hypothesis testing were (1) the gender of adult speakers identified by human listeners (male vs. female) and 
(2) addressee (ID vs. AD). Due to the spontaneous nature of speech, not all conditions were represented for 
all families. 
 
Coding of human communicative vocalizations by human analysts. In this study, ten trained human 
analysts identified human communicative vocalizations (i.e., speech or speech-like vocalizations by adult 
male, adult female or child talkers) and marked these intervals on the relevant textgrid tier (see Figure 1) in 
Praat (Boersma & Weenink, 2017). For stretches judged to have been adult speech, analysts indicated 
whether the speech was directed to a child (ID speech), to an adult (AD speech), or neither (e.g., self-
directed speech, pet-directed speech) based on context. Laughs, burps, sighs and other non-speech noises 
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made in the throat (e.g., in surprise) were not treated as speech nor as speech-like vocalizations. Stretches 
of speech that were unintelligible, due to being e.g., very faint or distant, were likewise not identified nor 
labeled, consistent with LENA’s goal of excluding “far-field” speech unlikely to contribute to child 
language development. Analysts counted all words within a contiguous stretch of speech attributed to a 
single adult talker and typed a number into the relevant Praat textgrid interval.   
 

 
 

Figure 1. Annotation scheme used by human analysts to identify human communicative 
vocalizations. The top of the display shows the waveform and spectrogram. Textgrid tiers provided 
for the following information (top to bottom): (1) The Analyzed Intervals tier indicated sampled 
audio portions (given with a ‘y’), (2) The Conversational Blocks tier depicted starts and ends of 
conversational blocks (e.g., AIOCM for adult male with target child) and pause units, (3) The 
Segments tier depicted LENA’s segment level ADEX code from among its sound categories. 
Analysts also indicated starting and ending points of human communicative vocalizations for: (4) 
the paternal caregiver; (5) the maternal caregiver; (6) a child, (7) another adult female, or (8) another 
adult male. For tiers corresponding to adult speech, i.e., (4), (5), (7), and (8), analysts indicated the 
addressee (e.g., “T” for child or “A” for adult), and they also typed a number corresponding to the 
judged number of intelligible words in each adult speech interval. Finally, (9) the Excluded 
Vocalizations tier was used to mark speech that significantly overlapped with other noises, other 
speech, or speech like vocalizations and were marked as overlap noise by LENA. 

 
Additional details of the coding procedure ensured that LENA was given “the benefit of the doubt”, 

e.g., concerning handling of acoustic overlap of talkers, and that minor temporal discrepancies did not count 
against agreement. First, recall that LENA assigns a single ADEX segment code to each successive chunk 
of audio. This is potentially problematic for LENA in the case of overlapping sound sources such as 
overlapped human vocalizations. In these cases, LENA is forced to “choose” between a single talker code 
(MAN, FAN, CHN, or CXN) or else a multi-talker code, (OLN), which stands for “overlapped speech or 
noise” during which no adult words are estimated. During OLN intervals, LENA does not increment the 
Adult Word Count. Recognizing LENA’s classification algorithms might handle such cases unreliably, 
coders were instructed that, whenever they detected overlapped speech, they should consider LENA’s labels 
and favor a coding consistent with LENA’s interpretation. In particular, if LENA had given a classification 
corresponding to a single talker code for overlapped utterances, and the overlapped utterances contained 
speech from a talker consistent with the single talker code which LENA had indicated, coders were 
instructed to attribute the overlapped portion to the single talker which LENA has identified by marking 
the interval on a tier for that talker type. If, on the other hand, LENA had assigned the multi-talker OLN 
code to the overlapped speech, then coders were instructed to mark the portion of overlapped speech on the 
“Excluded Vocalizations” tier (tier 9 in Figure 1). Given that OLN codes entailed no increment to LENA’s 
Adult Word Count, this handling had the effect of ensuring that speech frames identified as consisting of 
overlapped human vocalizations which were coded as OLN were essentially not treated in our analysis as 
speech (since they were not attributed to a single adult male, adult female, or child talker, consistent with 
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LENA’s handling). Second, to further advantage LENA and speed coding, analysts copied the temporal 
boundaries of LENA’s ADEX codes by default to mark the starts and ends of speech events, only changing 
those times relative to LENA if LENA was incorrect by more than 100 msec (a value in line with prior 
estimates of LENA’s temporal accuracy: Ko et al., 2016). This meant that minor (< 100 ms) discrepancies 
that LENA may have had with the actual start or end of vocalization did not count against LENA in our 
agreement quantification algorithms.  

Analyses of agreement between human and LENA classification. Our general approach to determining 
when LENA and human coders agreed was to: (i) divide sampled audio into short frames; (ii) determine 
the human-derived category characterizing each frame; (iii) determine the LENA classification code 
characterizing each frame; and then to (iv) determine, for each frame, whether the category implied a match 
between the LENA code and the human-derived category. Accuracy (and error) were then calculated as a 
percentage of frames showing consistency (or inconsistency) between the LENA code and the human-
derived category.  

 (i) Divide sampled audio into short frames. Each textgrid annotating the sampled audio was first 
divided into a sequence of frames using Matlab R2017b (The Mathworks Web-Site 

Table 2. Types of analyses assessing agreement between classifications by humans and by LENA 
for a given 100 msec audio frame.  

Analysis #1: Female Adult vs. Male Adult vs. Child vs. Other 

Label source Category 1: 

‘Female Adult’ 

Category 2: 

‘Male Adult’ 

Category 3: 

‘Child’ 

Category 4: 

‘Other’ 

Human female adult 
speech 

male adult speech child 
vocalization 

(no label) 

LENA FAN MAN CHN, CXN NON, OLN, 
TVN, FUZ, and 

SIL/“Faint” 

Analysis #2: Speech vs. Nonspeech 

Label source Category 1: 

‘Speech’ 

Category 2: 

‘Non-Speech’ 

Human female adult speech, male adult 
speech, child vocalization 

 

(no label) 

 

LENA MAN, FAN, CHN, or CXN NON, OLN, TVN, FUZ, and 
SIL/“Faint” 

Analysis #3: Adult Speech vs. Everything Else 

Label source Category 1: 

‘Adult Speech’ 

Category 2: 

‘Everything Else’ 

Human female adult speech, male adult speech

 

child vocalization. (no label) 

LENA MAN, FAN CHN, CXN, NON, OLN, TVN, 
FUZ, and SIL/“Faint” 

Note.  Female adult speech refers to a frame which was marked as speech on the Maternal 
Caregiver or Other Adult Female tier. Male adult speech refers to a frame which was marked as 
speech on the Paternal Caregiver or Other Adult Male tier.  
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[http://www.mathworks.com]) and the mPraat toolbox (Bořil & Skarnitzl, 2016), following prior work 
(Atal & Rabiner, 1976; Deller, Hansen, & Proakis, 2000; Dubey, Sangwan, & Hansen, 2018a, 2018b; 
Ephraim & Malah, 1984; Proakis, Deller, & Hansen, 1993; Rabiner & Juang, 1993). A 100 msec frame 
length was chosen first based on the granularity of LENA segmentation accuracy in prior literature (for 
instance, Ko et al., 2016); secondly, based on the instructions to human coders regarding the granularity of 
their decisions when LENA segment boundaries deviated from perceived audio; and finally, based on the 
observation that 100 msec is one sixth the size of the smallest LENA segment (600 ms) and one twelfth the  
size of the average segment (M = 1260 msec, SD = 760 msec), providing a meaningful resolution for 
sampling LENA’s classification of audio. Frames contained audio outside of sampled audio were discarded.  

 (ii) Determine the human-derived category characterizing each frame. Next, for each frame, we 
determined a human label that best characterized that frame (adult male, adult female, child, or other). This 
corresponded to the label taking up the greatest temporal extent (i.e., 50 msec or more) of the frame. For 
instance, if 90% of a frame’s temporal extent was identified as an adult male talker and 10% as an adult 
female talker, the frame was classified as an adult male speech frame. Regions coded by humans as either 
“paternal caregiver” or “other adult male” were treated as adult male speech, and regions coded by humans 
as either “maternal caregiver” or “other adult female” were treated as adult female speech (see Table 2). 
Frames of adult speech (either by a male or female) were characterized as an ‘AD’ or ‘ID’ frame if 50% or 
greater of the frame’s temporal extent had been annotated as adult-directed or infant-directed, respectively 
(or neither in the case of pet-directed or self-directed speech).  

 (iii) Determine the LENA classification code characterizing each frame. Next, a single label 
derived from LENA segment codes was assigned to each frame, corresponding to the one taking up the 
greatest temporal extent of the frame (i.e., 50 msec or more).  

 (iv) Determine, for each frame, whether the LENA classification code implied a match with the 
human-derived category. We computed several different analyses of agreement based on comparisons 
between human-derived categories implied by the human labels and LENA classification codes for frames; 
see Table 2. The first analysis addressed agreement about when speech vocalizations were happening and 
who was talking; it was based on a four-way category distinction: male adult speech, female adult speech, 
child vocalization, or other. The second analysis addressed agreement about whether a frame constituted 
some kind of speech vocalization or not; it was based on a two-way category distinction: speech vs. non-
speech. Finally, the third analysis addressed agreement about when adult speech was happening or not; it 

Table 3. Counts of frames given human analysts’ classifications (rows) and LENA classifications 
(columns).  

  
LENA Classifications 

  
FAN MAN 

CHN 
or 

CXN 
NON OLN TVN FUZ 

SIL or 
“faint” 

Totals 

H
u

m
an

 
cl

as
si

fi
ca

ti
on

s

female adult 
speech 

46011 
(59%) 

3951 
(5%) 

9068 
(12%) 

249 
(0%) 

5954 
(8%) 

1264 
(2%) 

5747 
(7%) 

5126  
(7%) 

77370 
 

male adult 
speech 

6770 
(18%) 

21790 
(57%) 

1482  
(4%) 

46 
(0%) 

2151 
(6%) 

895 
(2%) 

2768 
(7%) 

2182 
(6%) 

38084 
 

child 
vocalization 

4561 
(7%) 

399 
(1%) 

41908 
(63%) 

355 
(1%) 

7481 
(11%) 

565 
(1%) 

3878 
(6%) 

7011 
(11%) 

66158 
 

other 
11400 
(4%) 

8855 
(3%) 

27715 
(11%) 

2603 
(1%) 

18781 
(7%) 

6777 
(3%) 

40284 
(16%) 

142775 
(55%) 

259190 
 

 Totals 68742 34995 80173 3253 34367 9501 52677 157094 440802 

Note. Counts in boldface font were considered correct classifications. 
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was based on a two-way category distinction: adult speech vs. everything else. The third analysis was 
expected to be most pertinent to accuracy of LENA’s Adult Word Count, since this measure is based on 
the frames classified by LENA as adult speech (i.e., as MAN or FAN). Agreement (or error) was quantified 
as the percentage of frames classified correctly (or incorrectly), given the category implied by human 
annotation. 

 

Classification accuracy achieved by LENA for identifying and attributing speech to the correct talkers. 
Throughout the following, italic font is used to indicate a frame’s classification as assigned by humans. 
Table 3 shows counts of frames classified by humans as female adult speech, male adult speech, child 
vocalizations, or other in rows; LENA’s classifications of frames are shown across the columns. While 
there are many on-diagonal entries (i.e., correct classifications), there are many off-diagonal entries (i.e., 
incorrect classifications). For example, 59% of all female adult speech frames were correctly classified by 
LENA as ‘FAN’, such that, by extension, 41% of female adult speech frames were mis-classified; it is 
noteworthy that 12% of these mis-classifications were misattributions of a female adult speech frame to a 
child talker (CHN or CXN). By contrast, 57% of all male adult speech frames were correctly classified as 
‘MAN’, such that, by extension, 43% of male adult speech frames were mis-classified; however, just 4% 
of the mis-classified male adult speech frames were misattributions by LENA to a child talker (CHN or 
CXN). These observations preview our finding of an interaction between talker gender (male vs. female) 
and speech style (infant-directed vs. adult-directed), something discussed below.   

Table 4 shows LENA’s classification accuracy as an overall percentage of frames correctly 
classified by LENA within each family’s recording, averaged across families. Human-identified female 
adult speech, male adult speech, child vocalization, and other frames were classified correctly by LENA at 
average rates of 59%, 60%, 63%, and 82%, respectively (which corresponded in turn to error rates of 41%, 
40%, 37% and 18%, respectively). Nevertheless, LENA’s classification was statistically above chance (i.e., 
25%) for frames of each of the four classification categories for all 23 families [adult female: t(22) = 15.79, 
p < .001, adult male1: t(21) = 9.25, p < .001; child vocalizations: t(22) = 18.19, p < .001; other: t(22) = 
36.24, p < .001]. We also used tests of proportions for each family individually to investigate whether 
LENA’s classification accuracy for the four classification categories was significantly above chance (25%) 
for that family. For one family (Family 5), classification accuracy for male adult speech was statistically at 
chance levels (z = -.64, p =.26); male adult speech for this family was more likely to have been mis-
classified as female adult speech (27/52 frames) or as child speech (11/52 frames) than to have been 
correctly classified as male adult speech (just 11/52 frames). 

																																																													
1 One family did not have adult male speech in the selected audio. 

Table 4. Mean classification rates for LENA across families, relative to four-way 
classification by human analysts.  

  LENA Classifications 
  FAN MAN CHN/CXN Other 

H
u

m
an

 
cl

as
si

fi
ca

ti
on

s 
 

Female 
adult 

59 (10) 5 (7) 11 (8) 25 (9) 

Male 
adult 

14 (14) 60 (18) 4 (5) 22 (11) 

Child 7 (5) 0 (1) 63 (10) 30 (11) 
Other 4 (2) 3 (6) 10 (7) 82 (8) 

Note. The standard deviations across families are given in parentheses. Values in boldface 
font reflect correct classifications. 
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Classifications of ‘speech’: LENA false negative and false positive rates. Next, we assessed LENA’s 
accuracy at classifying speech and non-speech frames as ‘speech’ vs. ‘non-speech’ (cf. Table 2). Figure 2A 
shows a boxplot for LENA accuracy in classifying speech frames across families. Mean accuracy for 
classifying frames as ‘speech’ was 74%; this corresponded to a false negative rate (i.e., LENA 
misclassifying speech as ‘non-speech’) of 26% (SD = 7%). Classification accuracy for speech frames varied 

Analyses of Adult Word Count accuracy. Two approaches were taken to calculating error in LENA’s Adult 
Word Count. First, we calculated the ratio of total Adult Word Count for sampled audio from each family’s 
file (determined by summing Adult Word Counts in sampled audio from the ADEX file) to the total adult 
word count identified by humans within sampled audio. This ratio was a measure of the degree of over- or 
under-estimation by LENA metric for each family, where correlations between these quantities would not 
have revealed patterns of error as fully. Second, we assigned a fractional signed error in adult word count 
to each frame. To calculate the fractional signed error, a fractional LENA Adult Word Count was first 
assigned to each 100-ms frame by identifying the Adult Word Count of the LENA segment(s) that the frame 
overlapped with, then multiplying by the proportion of the corresponding LENA segment duration that 
temporally overlapped with the frame. Next a fractional human word count was analogously determined 
for each frame; this was calculated by multiplying the human adult word count of the adult speech portion 
that the frame overlapped with by the proportion of the duration of the speech portion that temporally 
overlapped with the frame. The fractional signed error for the frame was then calculated by subtracting the 
fractional human adult word count from the fractional LENA Adult Word Count. This fractional word count 
error was a dependent variable in statistical analyses testing whether categorical predictor variables (ID vs. 
AD, female vs. male speech, and correct vs. incorrect classification) associated with frames significantly 
influenced fractional signed error in adult word count.  

Human inter-rater reliability. Inter-rater reliability was assessed through re-coding a total of about 3.6 
minutes of audio from each of ten recordings, including 2.4 min of audio from adult conversational blocks 
and 1.2 minutes from pause units drawn equally from the beginning and end of the recording. For each 100 
msec frame within audio selected for the inter-rater reliability analysis, the frame’s classification by each 
analyst was determined by assigning each frame to a category (male adult, female adult, child, or other) for 
each coder following the rule described above using the largest portion of the frame’s temporal extent. 
Cohen’s kappa (Carletta, 1996; Kuhl et al., 1997) was then used to determine agreement between pairs of 
codes. Further, a value of kappa was calculated to assess the agreement in labeling ID and AD speech within 
the subset of frames for which the frame had been classified as adult speech in both the original and 
reliability coding.  

Results 

Human inter-rater reliability. Our first step was to establish inter-rater reliability for coding by human 
analysts. Results showed high inter-rater reliability among humans for distinctions of interest. The average 
 values indicate very good to outstanding agreement (Breen, Dilley, Kraemer, & Gibson, 2012; 
Krippendorff, 1980; Landis & Koch, 1977; Rietveld & van Hout, 1993; Syrdal & McGory, 2000). For the 
four-way classification of frames as adult male, adult female, child vocalization, and anything else (i.e., 
other), human analysts agreed with mean  = 0.77 (SD = 0.08). For the speech vs. non-speech distinction, 
human analysts agreed with mean  = 0.67 (SD = 0.12). For the adult speech vs. everything else distinction, 
human analysts agreed with mean  = 0.81 (SD = 0.08). For adult speech frames, human analysts agreed 
on whether speech was AD or ID with mean  = 0.90 (SD = 0.18). Further, accuracy of human word counts 
showed a strong correlation between the two sets of coded files, r(8) = .96, p < .001. This consistent across-
the-board agreement suggests the robustness of human judgments about when speech was happening/not 
happening, who was talking, whether the adults were talking to a child or to an adult, and how many words 
the adult spoke. The remaining analyses used these human judgments as the basis of determinations of 
LENA’s accuracy. 
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widely, from 53% to 86% across families (corresponding to 14% to 47% false negative rates). Table 5 
presents error rates across families for classification analyses, and shows that all families had over 10% 
error rate for false negatives.   

Figure 2B shows a boxplot for LENA accuracy in classifying non-speech frames across families. 
Mean accuracy for ‘non-speech’ classifications was 82%; this corresponded to a false positive rate (i.e., 
LENA misclassifying non-speech frames as ‘speech’) of 18% (SD = 8%). Classification accuracy for non-
speech frames ranged from 64% to 91% (corresponding to a range between 9% to 36% false positives); 
Table 5 shows a substantial majority (91%) of families had over 10% error rate for false positives.  

The lowest bar for evaluating LENA’s classification relates to whether it performed better than 
chance. Classification for both speech and non-speech frames was better than chance (50%) by a significant 
statistical margin across families [speech: t(22) = 17.531, p <.001; non-speech: t(22) = 20.382, p < .001]. 
Tests of proportions were also calculated for each family individually to investigate whether LENA’s 
classification accuracy for speech vs. non-speech was above chance for that family. Classification rates for 
speech vs. nonspeech exceeded chance levels (50%) for all families’ recordings (α = .05). 

 

 
 
Figure 2. Box plots showing variability in classification accuracy as a percentage of frames across 
each family’s recording for LENA classifying human labeled (A) speech and (B) non-speech or as 
(C) adult speech, and (D) everything else (see Table 2 for how these categories are defined). Data 
from individual families are shown in scatterplots for each classification. Overlaid numbers identify 
families’ recordings across analyses, further illustrating variability. 

 
Classifications of ‘adult speech’: LENA false negative and false positive rates. We next assessed LENA’s 
accuracy at classifying adult speech frames (i.e., frames humans identified as an adult female or adult male 
talker) as ‘adult speech’ (i.e., FAN or MAN); see Table 2. Figure 2C shows a boxplot for LENA accuracy 
in classifying adult speech frames across families. Mean accuracy for adult speech frames was 67%, 
corresponding to a mean false negative rate of 33% (SD = 9%) (i.e., LENA misclassifying adult speech 
frames as ‘everything else’). Classification accuracy for adult speech varied widely across families, ranging 
from 45% to 82% (corresponding to a range between 18% to 55% false negative rates). Table 5 shows that 
all families had over 10% error rate for false negatives.  
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Figure 2D shows a boxplot for LENA accuracy in classifying frames of everything else across 
families. Mean accuracy for classifying everything else was 92%, corresponding to a mean false positive 
rate of 8% (SD = 6%) (i.e., LENA misclassifying everything else frames as ‘adult speech’). Classification 
accuracy for everything else frames varied from 70% to 97% (corresponding to 3% to 30% false positive 
rates). Table 5 shows that a substantive minority (17%) of families had over 10% error rates for false 
positives.  

LENA’s classification accuracy was significantly better than chance at classifying both adult 
speech frames [t(22) = 8.865, p < .001] and everything else [t(22) = 35.808, p < .001]. Tests of proportions 
were calculated for each family individually to investigate whether LENA’s classification accuracy for 
adult speech vs. everything else was above chance for that family. This analysis revealed that for two 
families, LENA’s machine classifications were significantly below chance levels of accuracy for ‘adult 
speech’ classification with α = .05 (Family 10: z = -5.09; Family 18: z = -5.19). In both of these cases, 
intelligible frames of live adult speech were frequently miscoded by LENA as noise or recorded content 
(including OLN, TVN, and FUZ).  

This variability across families in adult speech false positive and false negative rates might be less 
worrisome if there was consistency in LENA’s accuracy within a family’s recording from one time point 
to the next. We therefore conducted a statistical test of the null hypothesis that there was consistency in 
LENA’s accuracy levels across our two sampling time points, i.e., no difference in LENA classification 
accuracy for adult speech between samples drawn from the beginning vs. the end of the day. A mixed 
effects model with a logit linking function was created to predict accuracy across frames (incorrect frames 
coded as 0, correct coded as 1; incorrect set as baseline) based on the fixed factor of Time with two levels 
(beginning vs. end, with beginning set as the baseline) and a random intercept for each family. This 
statistical test showed that the null hypothesis was not supported. Instead, LENA showed systematically 
lower accuracy for frames drawn from the end of the day than frames at the beginning of the day [beginning 
(baseline): β = 1.90, z = 29.02, p < .001, odds  6.7:1; end vs. beginning, β = -.11, z = -12.65, p < .001, 
odds  0.9:1]. Thus, not only is there a lack of consistency in classification accuracy/error rates for LENA 
across families’ recordings, but there is a lack of consistency in classification accuracy/error rates within 
families’ recordings as well. We return to this point in the Discussion.  

Effects of talker gender (male, female) and addressee (ID vs. AD) on ‘adult speech’ classification 
accuracy. The remaining analyses focused on adult speech frames only. Table 6 shows how the gender of 

Table 5. Error rate frequencies across analyses.  

Speech vs. Non-speech Adult speech vs. Everything Else Adult Word Count 

Error 
Rate 

False 
Negatives:  

Frequency (%) 

False 
Positives:  

Frequency (%) 

False 

Negatives:  

Frequency (%) 

False Positives: 

Frequency (%) 

|LENA - Human| 

Frequency (%) 

>5% 23/23 (100%) 23/23 (100%) 23/23 (100%) 14/23 (61%) 22/23 (96%) 

>10% 23/23 (100%) 21/23 (91%) 23/23 (100%) 4/23 (17%) 22/23 (96%) 

>20% 20/23 (87%) 8/23 (35%) 21/23 (91%) 1/23 (4%) 16/23 (70%) 

>30% 3/23 (13%) 2/23 (9%) 14/23 (61%) 1/23 (4%) 13/23 (57%) 

>40% 1/23 (4%) 0/23 (0%) 4/23 (17%) 0/23 (0%) 9/23 (30%) 

Note. Frequencies and percentages reflect the number of families (out of 23) that had classification 
error rates greater than the error rate on each row. Adult word counts reflect absolute percent 
overestimation or underestimation by LENA. 
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the talker (male vs. female), as well as the addressee (ID vs. AD speech) affected patterns of LENA 
classification for adult speech frames2. Both ‘FAN’ and ‘MAN’ classifications result in increments to 
LENA’s Adult Word Count estimates, while frames classified in any other way do not. Values in the third 
data column, which collapses instances which LENA classified adult speech frames as either ‘FAN’ or 
‘MAN’, therefore reflect correct classifications as ‘adult speech’ of some type (even if the talker’s gender  
was mis-classified).  

 
The patterns in Table 6 suggest that classification accuracy of adult speech may indeed depend on 

both talker gender and the addressee (ID vs. AD). For instance, for female adult talkers, a higher percentage 
of frames was accurately classified in AD (72%) than in ID (64%), with the latter condition involving a lot 
of misclassifications as a child (14%). Figure 3 shows rates of correct classification of adult speech frames 
as ‘adult speech’ for each family broken out as a function of Talker Gender (female, male) and Addressee 
(AD, ID). There is tremendous variability in how accurately adult speech was detected across families’ 
recordings, and this accuracy varies as a function of the gender and addressee.  

To construct a statistical test of whether there were systematic effects of Talker Gender or 
Addressee (ID vs. AD) on accuracy of classification of adult speech frames, we constructed a mixed effects  

																																																													
2	Frames identified as adult speech but as directed to individuals other than an adult or child, such as pets 
or oneself, were excluded. 
	

Table 6. Frame counts and percentages of frames classified human-identified adult speech frames as adult 
speech as a function of talker gender (female or male) and type of addressee (ID vs. AD). Boldface font 
indicates talker gender, while values in italics reflect LENA’s additionally correctly classifying talker 
gender. 

   LENA Classifications 

 
 

 
FAN MAN 

FAN 
or 

MAN 

CHN 
or 

CXN 
NON OLN TVN FUZ 

SIL 
or 

faint 
Totals 

H
u

m
an

 c
la

ss
if

ic
at

io
n

s A
D

 

Female 
adult 

speech 

7280 
(54%) 

2391 
(18%) 

9671 
(72%) 

448 
(3%) 

43 
(<1%) 

1592 
(12%) 

266 
(2%) 

906  
(7%) 

589 
(4%) 

13515 

Male 
adult 

speech 

259 
(4%) 

4138 
(70%) 

4397 
(73%) 

59 
 (1%) 

0 
(0%) 

337 
(6%) 

193 
(3%) 

482 
(8%) 

529 
(9%) 

5997 

Totals 7539 6529 14068 507 43 1929 459 1388 1118 19512 

ID
 

Female 
adult 

speech 

36463 
(62%) 

1405 
(2%) 

37868 
(64%) 

8162 
(14%) 

175 
(<1%) 

3978 
(7%) 

846 
(1%) 

4216 
(7%) 

3942 
(7%) 

59187 

Male 
adult 

speech 

6241 
(20%) 

16892 
(56%) 

23133 
(76%) 

1264 
(4%) 

32 
(<1%) 

1642 
(5%) 

557 
(2%) 

1960 
(6%) 

1868 
(6%) 

30456 

Totals 42704 18297 61001 9426 207 5620 1403 6176 5810 89643 

Note. Percentages of frames are rounded to the nearest percent. Values in boldface reflect LENA’s 
correctly classifying a human-identified adult speech frame as adult speech, regardless of how it classified. 
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Figure 3. Effects of Talker Gender (Female, Male) and Addressee (AD, ID) on accuracy in 
classification of adult speech as adult speech. Boxplots and associated scatter plots highlight mean 
accuracy and variability across families (indicated by numbers in the scatterplot). 

 
logistic regression model with a binomially-distributed dependent variable of accuracy of classification as 
‘adult speech’ (Agresti, 2002; Barr et al., 2013; Jaeger, 2008; Matuschek, Kliegl, Vasishth, Baayen, & 
Bates, 2017; Quené & Van den Bergh, 2008). This statistical approach shows robustness to imbalanced 
numbers of data points across grouping factors, as well as to missing observations (Th. Gries, 2015). The 
dependent variable value for each frame was set to 0 if that frame’s LENA classification for ‘adult speech’ 
was incorrect (i.e., if LENA classified the adult speech frame as anything other than FAN or MAN), and 
as 1 if its classification for ‘adult speech’ was correct (i.e., if LENA classified the frame as either FAN or 
MAN, even if it got the gender wrong). The model (implemented in R; Bates, Mächler, Bolker, & Walker, 
2015; R Development Core Team, 2015) included categorical predictor variables of Gender (female vs. 
male, with female set as the baseline) and Addressee (AD vs. ID, with AD set as the baseline), as well as 
their interaction, plus a random intercept term for the effect of each family.3  

As shown in Table 7, statistical modeling revealed statistically significant effects of both Gender 
and Addressee (and a significant interaction between these) on LENA’s ability to classify adult speech 
frames accurately as ‘adult speech’. The significant effect of Addressee (p < .001) indicates better 
classification as ‘adult speech’ for adult female AD speech (i.e., the baseline, M = 68%, SD = 15%; odds of 
correct classification ~2.4:1 [=exp(0.855)]) than for adult female ID speech (M = 63%, SD = 12%; odds of 
correct classification ~1.8:1 [=exp(0.855)*exp(-0.261)]). The significant effect of Gender (p < .001) 
indicates there was better classification for adult male AD speech (M = 76%, SD = 19%; odds of correct 
classification ~2.7:1 [=exp(0.855)*exp(0.129)]) than adult female AD speech (odds of 2.4:1 [=exp(0.855)]). 
Finally, the significant interaction between Gender and Addressee (p < .001) indicates that Addressee did 
not affect equally adult male and adult female speech. Rather, adult male ID speech had an odds of correct 
classification of about 3.3:1 [=exp(0.855)*exp(0.129)*exp(-0.261)*exp(0.477)], which was significantly 
more accurate classification than would be expected based on the independent effects of ID addressee on 

																																																													
3 Random slopes were not included in the model, due to the fact that not all families had observations for both levels 
of the two factors. 
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female speech and the effect of being male rather than female. This meant that adult male ID speech was 
classified correctly as ‘adult speech’ almost twice as often as expected based on independent effects of 
being ID and male (3.3/1.8  1.83). In summary, accuracy of classifying adult speech frames as ‘adult 
speech’ was significantly affected by both the gender of the talker, and whether the speech was AD or ID. 

 
Gender classification accuracy: Effects of addressee (ID vs. AD). To recap, statistical tests revealed 
significant differences in LENA’s classification accuracy for ‘adult speech’ as a function of talker gender 
and addressee. Female ID speech produced the worst classification performance, while male ID speech 
produced the best classification performance. Yet, these conditions were associated with notable error 
patterns (cf. Table 6); for instance, frames in the female ID condition were disproportionately misclassified 
as a child. Misclassifications as a child were far less common in the other three conditions. The male ID 
condition further showed an apparently disproportionate misclassification of the gender of the talker, and 
the female AD speech condition was also associated with a large number of gender misclassifications. Given 
these error patterns, we further investigated LENA’s accuracy in classifying talker gender. Figure 4 depicts 
LENA’s accuracy, for frames of adult speech, at correctly classifying the gender of an adult talker, broken 
out by the talker’s human-identified gender (male vs. female) and the addressee condition (ID vs. AD).  

Rigorous statistical testing bears out what is apparent in the figure, i.e., differential error in LENA’s 
classification of the gender of an adult talker and addressee condition. The statistical analysis was done on 
the subset of adult speech frames which were correctly classified by LENA as ‘adult speech’ (i.e., FAN or 
MAN). We constructed a mixed effects logistic regression model with a categorical, binomially-distributed 
dependent variable in which, for each human-identified adult speech frame which LENA had classified as 
adult speech (FAN or MAN), the dependent variable value was coded as 1 if LENA correctly classified the 
gender as the same that humans had identified, and as 0 otherwise. Our model also included categorical 
predictor variables of (human-identified) talker gender (with female set as the baseline) and addressee (ID 
vs. AD; with AD set as the baseline). A random intercept term for the effect of each family was also 
included. 

As shown in Table 8, statistical modeling revealed that gender classification for adult speech frames 
was significantly affected both by Gender and Addressee, and by a significant interaction between these. 
The significant effect of Addressee (p < .001) suggested that classifying gender for adult female ID speech 
was eight times better (with odds of correct classification of ~53:1 [=exp(1.851)*exp(2.126)]) than for adult 
female AD speech (with odds of ~6:1 [=exp(1.851)]). Further, the significant effect of Gender (p < .001) 
suggested that classification of gender for adult male AD speech was four times better (odds of ~27:1 
[=exp(1.851)*exp(1.438)]) than for adult female AD speech (odds of ~6:1 [=exp(0.855)]). Finally, the 
significant interaction between Gender and Addressee (p < .001) meant that Addressee did not affect the 
relative accuracy of gender classification equally for adult male and adult female speech. Rather, adult male 
ID speech had an odds of correct gender classification of about 3.6:1 
[=exp(1.851)*exp(1.438)*exp(2.126)*exp(-4.124)]. As such, LENA classified gender for adult male ID 
speech more poorly than any other condition; the odds of correct gender classification for adult female AD 
speech being two times higher; for adult male AD speech, seven times higher; and for adult female ID 
speech, 14 times higher, than accuracy of gender classification in the adult male ID speech condition. 

Table 7. Statistical model of effects of Addressee and speaker Gender on accuracy of classification of adult 
speech frames as ‘adult speech’ (i.e., FAN or MAN).. 
 β Estimate St. Error z Pr(>|z|) 

(intercept) 0.855 0.084 10.202 < .001** 

Addressee -0.261 0.024 -10.828 < .001** 

Gender 0.129 0.035 3.662 < .001** 

Addressee:Gender 0.477 0.041 11.695 < .001** 
Note. ‘**’ indicates statistical significance at α = .001
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Figure 4. Effects of Talker Gender (Female, Male) and Addressee (AD, ID) on accuracy of gender 
classification within the subset of human identified adult speech frames correctly classified as adult 
speech by LENA. Boxplots and associated scatter plots highlight mean accuracy and variability 
across families (indicated by numbers in the scatterplot). 
 

Accuracy in LENA’s Adult Word Count measure. Figure 5 presents the percent over- or under-
estimation of LENA’s Adult Word Count compared to the word count from human listeners for sampled 
audio. A value of 100% means LENA’s Adult Word Count perfectly agrees with human word count. The 
mean percent of over-estimation for LENA Adult Word Count was M = 147%, indicating an average 47% 
overestimation in word count by LENA relative to human word counts. The median overestimation was 
31% (the difference between the mean and the median is largely driven by 3 families – excluding these 
families generated a Mean = 29% overestimation, a value in line with the median). LENA word counts 
ranged from 83% to 310% of human word counts (SD = 56%). Table 5 shows that 22/23 families had 
greater than 10% difference between LENA’s Adult Word Count and human word counts (either over- or 
under-estimation). Surprisingly, for 7/23 (30%) of the families, the over-estimation was greater than 50%. 
Nevertheless, in keeping with prior findings, LENA Adult Word Count and human adult word counts 
were correlated with one another [r(21) = .86, p < .001]4, meaning that both the human count and LENA  

																																																													
4As pointed out in the Introduction, correlations are not optimal tools for comparing methods. However, 
the correlation is provided for comparison with values from prior LENA reliability studies (see Table 1). 	

Table 8. Statistical model of effects of Addressee and speaker Gender on accuracy of classification of adult 
speech frames according to the correct gender (i.e., adult female as ‘FAN’ and adult male as ‘MAN’). 
 Estimate St. Error z  Pr(>|z|)

(intercept) 1.851 0.234 7.911 < .001 ** 

Addressee 2.126 0.070 20.626 < .001 ** 

Gender 1.438 0.046 46.053 < .001 ** 

Addressee:Gender -4.124 0.083 -49.701 < .001 ** 
Note. ‘**’ indicates statistical significance at α = .001 
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Figure 5. Box plots showing variability in error between LENA Adult Word Count and human adult 
word count. Values represent the percent of over or under-estimation by LENA (LENA / Human) 
such that the dashed line at 100% represented perfect agreement between LENA and human word 
counts. Values below this line represent underestimation and values above represent over-
estimation.  

 

count tended to rise together, in spite of the overestimation by LENA. Similarly, the ranking of 
participants based on LENA’s Adult Word Count and human word counts showed a significant 
correlation rs(21) = .46, p = .029 suggesting that the ranked order of word counts from humans and 
LENA were somewhat consistent despite the large and variable errors we observed.   

Relationship between classification accuracy and Adult Word Count. Given that the Adult Word Count 
is preceded by, and depends on, the classification	step, we expected that accuracy for classifying frames as 
‘adult speech’ would significantly influence accuracy of LENA’s Adult Word Count. However, no prior 
published study has tested or shown such a dependency. To test this, we constructed a generalized linear 
model in R (using glm) to test the extent to which, across families, the percentage of correct classifications 
of adult speech and everything else frames (or their interaction) predicted the percentage of over- or under-
estimation for the LENA Adult Word Count (see above). All variables were scaled and centered. Table 9  
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shows the results of this statistical modeling. Accuracy of classification of everything else frames 
significantly predicted Adult Word Count accuracy, with a large effect size (r = -0.77).5 There were no  
other significant effects; we return to this point in the Discussion.6 

Given this finding relating overall everything else classification accuracy to overall Adult Word 
Count error, we sought to identify how classification accuracy interacted with the additional factors of 
gender and addressee on a frame by frame basis. Therefore, a generalized linear mixed effect regression 
model was constructed to predict the continuous dependent variable of signed per-frame Adult Word Count 
error. The model included categorical predictor variables for each adult speech frame consisting of Talker 
Gender (with female as the baseline), Addressee (ID vs. AD, with AD as baseline), Classification Accuracy 
(incorrect vs. correct, with incorrect as baseline), and all possible interactions (see Method). The model 
included a random intercept-only effect term to account for clustering by family. This model was reduced 
through iterative elimination of non-significant interaction terms starting with the three-way interaction 
until a likelihood ratio test revealed that the next simpler model was a significantly worse fit. We assumed 
convergence of the t and z distributions.  

The final model (Table 10) showed that Adult Word Count accuracy was significantly affected by 
Classification Accuracy, which had a large effect on the amount of per-frame signed error; there were also 
smaller, but still significant, effects of Talker Gender and Addressee, and significant interactions between 
Talker Gender and Addressee and between Classification Accuracy and Gender. A value of “0” for per-
frame signed error would indicate perfect agreement in proportional word counts by humans and LENA. 
First, incorrectly-classified AD frames engendered more negative signed error (bfemale = -0.3, bmale = -0.28), 
that is, a greater deviation in the direction of under-counting, than incorrectly-classified ID frames (bfemale 
= -0.23, bmale = -0.24). Moreover, correctly-classified frames engendered positive signed error, i.e., over-
counting, of a magnitude that depended on the Talker Gender and Addressee. Correctly-classified AD  

																																																													
5 A plot of everything else classification accuracy against Adult Word Count classification accuracy 
suggested that Family 22 was something of an outlier. To test whether Family 22 was driving significance 
for the generalized linear model reported in Table 10, we re-ran the model but removing Family 22. The 
results were similar. The statistically significant effect of everything else classification accuracy on LENA 
Adult Word Count accuracy persisted (β estimate = -0.523, st. error = 0.20, t = -2.61, p = .018), with no 
other significant effect or interaction, as before. Further, the effect size for the relationship between 
everything else classification accuracy to Adult Word Count accuracy remained strong (r = 0.58). These 
results support the robustness of the statistical relationship between everything else classification accuracy 
and Adult Word Count accuracy and suggest the results are not due to an outlier.			
6 The architecture of LENA’s algorithms for Adult Word Count calculations entail that Adult Word Count 
is only incremented when stretches of audio are classified as ‘adult speech’, as opposed to any kind of 
‘speech’ in general. Consistent with this, a generalized linear model was constructed for LENA Adult 
Word Count accuracy with predictor variables of accuracy of speech and nonspeech classification (and 
their interaction); neither variable, nor the interaction, showed a significant effect (all p’s > 0.58). This 
additional modeling underscores the dependency of LENA’s Adult Word Count classification accuracy 
on ‘adult speech’ classification decisions per se, rather than all speech (or speech-like) vocalization 
decisions.	

Table 9. Statistical model of effects of adult speech and everything else classification accuracy on LENA 
Adult Word Count accuracy. 
 
 β Estimate St. Error t Pr(>|t|) 

(intercept) 0.043 0.169 0.268 0.79174 

adult speech 0.029 0.234 0.125 0.90181 

everything else -0.781 0.168 -4.662 < .001** 

adult speech: everything else 0.188 0.350 0.539 0.59618 
Note. ‘**’ indicates statistical significance at α = .001.
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frames engendered positive signed error (bfemale = +0.06, bmale = +0.05) which was nevertheless smaller in 
magnitude than the error of ID frames (bfemale = +0.13, bmale = +0.09).  

Taken together, these results reveal that LENA showed systematically more error in detecting and 
correctly classifying speech of adult females than speech of adult males. Even under conditions when 
LENA had accurately classified frames of adult talkers as ‘adult speech’, LENA was less accurate in 
registering and counting words of adult females than in counting words of adult males, showing 
systematically greater undercounting of words of adult females than words of adult males. Finally, there 
were significantly higher error rates for the LENA Adult Word Count when adult females were directing 
their utterances to children (i.e., ID condition), compared with any other condition. 

Discussion  

This study presented an independent assessment of reliability in classification and Adult Word Count 
from LENA at-home recordings. Independent assessment (i.e., analyses not funded by the LENA 
Foundation) is a requisite for clinicians and researchers to use this tool with confidence. The current 
analysis focused on accuracy of audio classification by LENA, accuracy of LENA’s Adult Word Count 
metric, and the implications of classification errors on Adult Word Count estimates. Our focus on these 
metrics was due to the developmental importance of quantity and quality of environmental speech and the 
importance of child directed speech for language development (e.g. Hoff & Naigles, 2002; Huttenlocher, 
Haight, Bryk, Seltzer, & Lyons, 1991; Shneidman et al., 2013). LENA’s automatic analysis of Adult 
Word Count has become widely used to assess the quantity and quality (assessed through addressee) of 
speech in children’s environments (Romeo et al., 2018; Weisleder & Fernald, 2013). Given the shift 
towards its use, we sought to provide an independent evaluation of LENA by having human analysts (i) 
identify when a man, woman, or child produced a speech vocalization; (ii) indicate, for adult talkers, 
whether the utterance was child-directed or adult-directed; and (iii) count the number of intelligible adult 
words. A rhetorical question is therefore posed: What amount of error is ‘acceptable,’ for both research 
and clinical purposes, for ensuring standards of validity and reliability in order to justify reliance on 
automatic, machine-based decisions about the amount of language input in a child’s environment? 

LENA showed variable – and in some cases quite large – errors in classifying audio as the correct 
talker (man, woman, or child). The average false negative rate for adult speech frames (i.e., frames 
identified by human coders as adult speech but classified by LENA as not ‘adult speech’) was 33%; this 
error ranged from a low of 18% missed frames to a high of 55% missed frames. For all 23 families in our 
sample (i.e., 100%), LENA was in error on more than 10% of intelligible adult speech frames. 
Classification of audio appears to be highest (92% accuracy) for LENA correctly identifying audio that 
does not contain adult speech as not adult speech (everything else). In contrast, human identified adult 
female speech was correctly identified by LENA as female speech only 59% of the time (with a 10% 
standard deviation).  

Table 10 
Statistical model of effects of Addressee, Gender and Classification Accuracy on fractional Adult Word 
Count Error per frame. 
 β Estimate St. Error t Pr(>|t|) 

(intercept) -0.302 0.009 -32.07 < .001** 

Addressee 0.070 0.002 34.12 < .001** 

Gender 0.022 0.003 6.13 < .001** 

Accuracy 0.363 0.001 245.98 < .001** 

Addressee:Gender -0.028 0.003 -8.03 < .001** 

Gender:Accuracy -0.028 0.003 -10.42 < .001** 

Note. ‘**’ indicates statistical significance at α = .001.	
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Further, both human-identified gender (male vs. female) and addressee (ID vs. AD) significantly 
affected the accuracy of LENA’s audio classification. LENA was overall statistically better at classifying 
frames of adult speech as ‘adult speech’ for male voices compared with female voices. LENA showed 
especially high error at classifying adult female speech in ID condition, in which LENA 
disproportionately classified frames as a child talker (and thus not as adult speech). Even when LENA 
accurately identifies audio as adult speech, gender and addressee still affect accurate classification of 
talker gender. Within correctly classified adult speech frames we found that accuracy for ID speech was 
high for women but low for men, whereas AD speech accuracy was consistent across genders. Thus, even 
in cases when LENA accurately identifies the amount of adult speech, variability due to addressee and 
gender may lead to attribution of adult word count to the incorrect gender.  

We also showed that these systematic classification errors significantly impacted the accuracy of 
LENA’s Adult Word Count. On average, LENA overestimated Adult Word Counts by 47% (median of 
31% overestimation). The amounts of error ranged from undercounting words by 17% to over-counting 
words by 208%. The correlation observed between human word counts and LENA’s AWC (r = .86) was 
well within the range of values reported for prior studies (see Table 1). The variability in error for Adult 
Word Count estimates we identify are concerning and this significant correlation obscures the 
problematic over-estimation by LENA we observed, highlighting the inadequacy of correlations for 
assessing reliability.  

This is the first paper to have identified the speaker gender and intended addressee as variables 
that directly affect accuracy of segment classification and Adult Word Count. Gender and addressee both 
interacted with classification accuracy to predict word count error. Interestingly, the relative amount of 
error across ID vs. AD conditions depended on whether frames had been correctly classified as adult 
speech. In particular, when human identified adult speech frames were missed by LENA, the Adult Word 
Count showed greater error (i.e., more undercounting) when frames were AD compared with when they 
were ID. However, when adult speech frames were correctly classified, the Adult Word Count showed 
greater error (i.e., more overcounting) when frames were ID compared with when they were AD. Further, 
frames of male adult speech generated significantly less error in Adult Word Count than frames of female 
adult speech for 3 out of 4 conditions; only inaccurately classified ID frames showed less error for female 
than male speech. The patterns we identified suggest that LENA misattributes or misses Adult Words as a 
function of the talker’s gender and speech style in part due to systematic errors in classification, and this 
is especially problematic for ID speech from adult female speakers.  

Therefore, a main finding was that adult females talking in ID register were particularly likely to 
have their speech ‘missed’ (i.e., LENA failed to detect it) for purposes of Adult Word Count; such speech 
was disproportionately attributed to children. LENA very rarely misattributed the gender of female adult 
talkers who were addressing children (ID speech). In other words, when female ID speech was accurately 
identified to be from an adult (as opposed to mistakenly attributed to a child), this adult speech was 
assigned to the correct gender (‘female’) with high accuracy. Adult male speech showed a generally 
opposite pattern – better detection accuracy but worse gender classification. That is, adult male speech 
was much more readily detected as ‘adult speech’ (and tended to be more faithfully reflected in Adult 
Word Counts), but gender classification was quite poor, with male ID speech was mis-attributed to 
females 14 times more often than the reverse (female adult ID speech being attributed to a male adult).  

Across all results of classification and Adult Word Count accuracy we see striking variability 
between families. Some of the variability across families in the accuracy with which adults’ speech was 
classified as ‘adult speech’ depended upon the gender and addressee of the speaker. Speakers of a given 
gender differ in their typical fundamental frequency ranges; for instance, the distribution of mean F0 
values for adult female speakers – even in AD register – ranges from statistically quite low and 
overlapping with higher-pitched males, to statistically quite high and overlapping with the typical F0 
values of children (Hanson, 1997; Hanson & Chuang, 1999; Iseli, Shue, & Alwan, 2006). Classification 
of speech given this variability is further complicated by variable usage of ID and/or AD registers 
between speakers. Given prior research suggesting a dependency of LENA’s classification accuracy on F0 
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(VanDam & Silbert, 2016), we speculate that female talkers who had naturally have lower F0 may have 
produced speech which was better detected than female talkers with higher F0.  

Varying degrees of competing environmental noise sources presumably also account for some of 
the variability in classification error. Classification errors where TV or young siblings are misclassified as 
adult speech could significantly alter Adult Word Count accuracy, a concern that may underlie our 
finding that the rate of correct classification of everything else frames in the ‘adult speech’ analysis 
significantly predicted Adult Word Count error. In keeping with this idea, we observed that for two of the 
families with more than 100% overestimation in LENA’s Adult Word Count – relative to the human word 
count – the error seemed to have been driven by misclassification of TV, while in the third case it 
appeared to be due to misclassification of sibling speech as adult speech.  Overestimation by LENA has 
been observed in prior studies due to TV (Xu, Yapanel, et al., 2009), and during activities in the home  
(Burgess et al., 2013; or in Table 2 of  Soderstrom & Wittebolle, 2013). 

There were several limitations of our study. First, sampled audio came specifically from the 
beginning and end of the day-long recordings; this could be considered a strength and/or a weakness. 
These times were chosen to provide a fairer test of LENA’s measurement of the home environment 
because family members were likely to be at home engaging with the child in routine activities. In 
addition to providing a sample that we thought would provide consistency across families, it allowed us to 
compare accuracy across multiple times of the day. It also allowed coders to have context necessary for 
identifying addressee. Our samples also included audio judged by LENA to have adult speech, plus 
random samples of portions judged by LENA to have no near-field adult or child vocalizations, allowing 
estimation of false negative rates. Given the sampling approach, results from our sampling method are 
representative of LENA’s performance early and late in children’s days. The activities and genders of the 
speakers in these samples may not be representative of the entire day – for example, there may be more 
male speech in the selected samples. We did not randomly sample from the entire recording – e.g., times 
when the children might have been in noisy daycare environments, or in cars on the freeway. It is unclear 
whether such sampling would yield worse or better accuracy estimates. It should be noted that other 
studies – including the well-cited study by Xu et al. 2009 – used non-random sampling methods.  

Another limitation is that our coding system was designed to identify only adult speech and child 
speech (or speech-like vocalizations), rather than any other kinds of audio sources. While the coding 
system permitted us to efficiently assess specifically what we cared about – LENA’s accuracy at 
identifying speech vocalizations and Adult Word Count – it nevertheless left us unable to assess other 
reasons why LENA may have missed speech vocalizations, or incorrectly classified audio as speech 
vocalizations when it was not. The extent to which some classifications decisions show ceiling effects 
while others show extensive variability across families demonstrates the strength of our coding system; 
however, we cannot determine whether TV might have been a frequent source of error for LENA. 

Moreover, the fact that we included children with a variety of hearing statuses is both a strength 
and a limitation. Assessing available families’ recordings regardless of hearing status was undertaken as a 
specific targeted goal of our study, due to our need to be able to generalize LENA’s accuracy across our 
heterogeneous population with a variety of hearing statuses. We therefore viewed this as a strength, 
because the results were not dependent on any particular hearing status; however, our study was not 
designed to assess the effects of hearing status, which would have involved an entirely different design 
(e.g., matching groups on potentially extraneous variables, and larger samples for each hearing status).  

Finally, due to our overarching research interest in variability in language environment provided 
by adults, our study was designed to analyze adult speech classification and Adult Word Count accuracy. 
It was not designed to analyze other LENA metrics such as conversational turns or child vocalization 
counts. Nevertheless, our findings that females talking in ID speech register were often misclassified as 
children, where this misclassification happened significantly more often than when females were talking 
in an AD speech register should give users of child vocalization LENA metrics pause. Likewise, results 
from this study provide reason for concern about LENA’s conversational turn counts, given that in 
conversations between a mother and a child, mothers can often be expected to use an ID register. Our 
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classification results therefore suggest that LENA may significantly misrepresent the count of turns, a 
topic we are investigating in ongoing studies.	

	Despite these limitations, the findings reported here raise concerns for researchers making 
theoretical claims based on individual differences from LENA estimates of word counts. First, our 
findings of systematic error in audio classification for adult female speech in ID register raises concerns 
for research relying on LENA defined segmentation to select audio for analysis (e.g. Ko et al., 2016; Seidl 
et al., 2018) especially if infant-directed female speech is of interest. Furthermore, our findings that Adult 
Word Count is of variable accuracy across families should give pause to a class of studies that rely on raw 
reports of Adult Word Count to make conclusions (e.g. Irvin, Hume, Boyd, McBee, & Odom, 2013; 
Marchman et al., 2017; Sacks et al., 2014; VanDam et al., 2012). Our finding that this metric was of 
variable accuracy across families suggests that individual differences in the Adult Word Count metric in 
such studies may reflect the actual speech environment or may represent measurement error between 
families. Taking steps to find portions of audio across recordings that are as similar as possible (such as 
the hour with the most recorded vocal interaction as in Romeo et al., 2018) may minimize the observed 
variability. Similarly, using LENA to identify samples likely to contain speech and then transcribing 
those samples (Garcia-Sierra, Ramírez-Esparza, & Kuhl, 2016; Oller et al., 2010; Ramírez�Esparza et al., 
2014) seems to be a well-supported approach based on our results. Our finding that classification and 
Adult Word Count accuracy in each frame are significantly affected by gender and addressee (with an ID 
or AD register) presents theoretical concerns for research making claims specifically about infant directed 
speech or about the roles of male or female caregivers based solely on LENA derived metrics. For 
example, a methodological approach in a recent study (Weisleder & Fernald, 2013) classified 5 minute 
portions of LENA recordings as infant directed or adult directed. The LENA-generated Adult Word 
Count within each portion was then binned as either ID or AD. Our results suggest that such binning is 
problematic given systematic differences in Adult Word Count error rates for ID versus AD speech. The 
issues highlighted here are theoretically problematic for researchers making claims about individual 
differences between children in the LENA Adult Word Count metric, especially when the size of those 
differences are within the range of LENA’s measurement error.  

Clinicians should also be aware of the implications of our results. If the quantification of a speech 
environment LENA reports is inaccurate, then clinical guidance will correspondingly be misguided. This 
is especially concerning given the widespread use of LENA as a clinical assessment tool, such as in the 
Providence Talks city-wide language exposure intervention for at-risk children (Talbot, 2015; Wong, 
Boben, & Thomas, 2018). Clinical intervention requires working with individual families to determine 
what speech the child is hearing (i.e. Pae et al., 2016; Suskind, Graf, et al., 2016; Suskind, Leffel, et al., 
2016; Zhang et al., 2015). Given the variability across families observed in the present study, the 
guidance clinicians offer may be distorted based on factors such as the register that mothers use or the 
gender typicality of their speech when speaking to their children. That the inaccuracies are unpredictable 
a-priori across families compounds the problematic clinical implications of our present findings. A worst 
case scenario suggested from our results is that undercounting in ID female speech could lead female 
caretakers to appear to clinicians to provide less speech than they actually do provide. However, shifting 
to less pronounced (more AD like) speech would lead to female speakers getting more credit from 
clinicians despite the speech being less helpful for children learning language. These concerns – and 
identifying solutions to address them – should be a priority for anyone focused on clinical interventions.  

Overall, these findings suggest that relying solely on LENA’s Adult Word Count to infer who is 
talking, and how much they are talking, is not a best practice for either clinical use or research. These 
findings cast doubt on the value of LENA-generated metrics as a basis of clinical recommendations for 
individual families or for use in individual-differences research – where these data on LENA’s 
unreliability have prompted our research team’s return to hand-coding of child language environments. 
LENA’s accuracy varies greatly from family to family, or from one time to another. Much adult speech 
that is intelligible to humans is missed by LENA, especially female infant-directed speech. If the goal is 
to use a very large set of recordings to identify general trends from correlations, then LENA may be a 
reasonable tool for this purpose. However, these data provide evidence relying solely on LENA’s Adult 
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Word Count to infer the amount of language spoken by caregivers in children’s home environments is not 
a best practice, since doing so may lead to invalid clinical judgments and/or research conclusions. 
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